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Abstract: In the first of this pair of papers, it was proven that there cannot be a physical computer

to which one can properly pose any and all computational tasks concerning the physical universe.

It was then further proven that no physical computer C can'correctly carry out all computational

tasks that can be posed to C. As a particular example, this result means that no physical computer

that can, for any physical system external to that computer, take the specification of that external

system's state as input and then correctly predict its future state before that future state actually

occurs; one cannot build a physical computer that can be assured of correctly "processing infor-

mation faster than the universe does". These results do not rely on systems that are infinite, and/or

non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely fast,

infinitely dense computer, with computational powers greater than that of a Turing Machine. This

generality is a direct consequence of the fact that a novel definition of computation -- "physical

computation" m is needed to address the issues considered in these papers, which concern real



physical computers.While this noveldefinitiondoesnot fit into thetraditionalChomsky hierar-

chy, the mathematicalstructureandimpossibility resultsassociatedwith it haveparallels in the

mathematicsof the Chomsky hierarchy.This secondpaperof the pair presentsa preliminary

explorationof someof this mathematicalstructure.Analoguesof Chomskianresultsconcerning

universalTuring Machinesand the Halting theoremarederived,as are resultsconcerning the

(ira)possibilityof certainkinds of error-correctingcodes.In addition,ananalogueof algorithmic

information complexity, "prediction complexity", is elaborated.A task-independentbound is

derivedon how muchthepredictioncomplexityof a computationaltaskcandiffer for two differ-

ent referenceuniversalphysicalcomputersusedto solvethattask,aboundsimilar to the"encod-

ing" bound governinghow much the algorithm information complexity of a Turing machine

calculationcandiffer for two referenceuniversalTuring machines.Finally, it is proventhateither

theHamiltonianof our universeproscribesacertaintypeof computation,or predictioncomplex-

ity is unique(unlikealgorithmic informationcomplexity), in that thereis oneandonly versionof

it thatcanbeapplicablethroughoutouruniverse.



INTRODUCTION

Recentlytherehasbeenheightenedinterestin therelationshipbetweenphysicsandcomputa-

tion ([1-33]). This interestextendsfar beyondthe topic of quantumcomputation.On the one

hand,physicshasbeenusedto investigatethe limits on computation imposed by operating com-

puters in the real physical universe. Conversely, there has been speculation concerning the limits

imposed on the physical universe (or at least imposed on our models of the physical universe) by

the need for the universe to process information, as computers do.

To investigate this second issue one would like to know what fundamental distinctions, if any,

there are between the physical universe and a physical computer. To address this issue the first of

this pair of papers begins by establishing that the universe cannot contain a computer to which one

can pose any arbitrary computational task. Accordingly, paper I goes on to consider computer-

indexed subsets of computational tasks, where all the members of any such subset can be posed to

the associated computer. It then proves that one cannot build a computer that can "process infor-

mation faster than the universe". More precisely, it is shown that one cannot build a computer that

can, for any physical system, correctly predict any aspect of that system's future state before that

future state actually occurs. This is true even if the prediction problem is restricted to be from the

set of computational tasks that can be posed to the computer.

This asymmetry in computational speeds constitutes a fundamental distinction between the

universe and the set of all physical computers. Its existence casts an interesting light on the ideas

of Fredkin, Landauer and others concerning whether the universe "is" a computer, whether there

are "information-processing restrictions" on the laws of physics, etc. [10, 18]. In a certain sense,

the universe is more powerful than any information-processing system constructed within it could

be. This result can alternatively be viewed as a restriction on the universe as a whole -- the uni-

verse cannot support the existence within it of a computer that can process information as fast as it

can.

The analysis of paper I also establishes (for example) the necessarily fallible nature of retrod-



lotion, of observation, and of control. The way that results of such generality are derived is by

examining the underlying issues from the broad perspective of the computational character of

physical systems in general, rather than that of some single precisely specified physical system.

The associated mathematics does not directly involve dynamical systems like Turing machines.

Rather it casts computation in terms of partitions of the space of possible worldlines of the uni-

verse. For example, to specify what input a particular physical computer has at a particular time is

to specify a particular subset of all possible world/ines of the universe; different inputs to the com-

putation correspond to different such subsets. Similar partitions specify outputs of a physical

computer. Results concerning the (ira)possibility of certain kinds of physical computation are

derived by considering the relationship between these kinds of partitions. In its being defined in

terms of such partitions, "physical computation" involves a structure that need not even be instan-

tiated in some particular physically localized apparatus; the formal definition of a physical com-

puter is general enough to also include more subtle non-localized dynamical processes unfolding

across the entire universe.

This second paper begins with a cursory review of these partition-based definitions and

results of paper I. Despite its being distinct from the mathematics of the Chomsky hierarchy, as

elaborated below, the mathematics and impossibility results governing these partitions bears many

parallels with that of the Chomsky hierarchy. Section 2 of this second paper explicates some of

that mathematical structure, involving topics ranging from error correction to the (lack of) transi-

tivity of computational predictability across multiple distinct computers. In particular, results are

presented concerning physical computation analogues of the mathematics of Turing machines,

e.g., "universal" physical computers, and Halting theorems for physical computers. In addition, an

analogue of algorithmic information complexity, "prediction complexity", is elaborated. A task-

independent bound is derived on how much the prediction complexity of a computational task can

differ for two different reference universal physical computers used to solve that task. This bound

is similar to the "encoding" bound governing how much the algorithmic information complexity

of a Turing machine calculation can differ for two reference universal Turing machines. It is then



proven that one of two cases must hold. One is that the Hamiitonian of" our universe proscribes a

certain type of computation. The other possibility is that, unlike conventional algorithmic infor-

mation complexity, its physical computation analogue is unique, in that there is one and only ver-

sion of it that can be applicable throughout our universe.

Throughout these papers, B - {0, 1 J, _ is defined to be the set of all real numbers, '^' is the

logical and operator, and 'NOT' is the logical not operator applied to B. To avoid proliferation of

symbols, often set-delineating curly brackets will be used surrounding a single symbol, in which

case that symbol is to taken to be a variable with the indicated set being the set of all values of that

variable. So for example "{y}" refers to the set of all values of the variable y. In addition o(A) is

the cardinality of any set A, and 2A is the power set of A. u E U are the possible states of the uni-

A A A

verse, and U is the space of allowed trajectories through U. So u e U is a single-valued map from

t e _ to u e U, with ut - _Jt the state of the universe at time t. Note that since the universe is

A

microscopically deterministic, u t for any t uniquely specifies u. Sometimes there will be implicit

A

constraints on U. For example, we will assume in discussing any particular computer that the

space 1.) is restricted to worldlines _ that contain that computer. An earlier analysis addressing

some of the issues considered in this pair of papers can be found in [30].

I. REVIEW OF DEFINITIONS AND FOUNDATIONAL RESULTS RELATED TO

PHYSICAL COMPUTATION

In paper I the process by which real physical computers make predictions concerning physical

systems is abstracted to produce a mathematical definition of physical computation. This section

reviews that definition and the associated fundamental mathematical results. The reader is

referred to paper I for more extensive discussion of the definitions.



i) Definition of a Physical Computer

We start by distinguishing the specification of what we want the computer to calculate from

the results of that calculation:

Definition 1: Any question q 6 Q is a pair, consisting of a set A of answers and a single-valued

function from _ 6 [_ to o_ _ A. A(q) indicates the A-component of the pair q.

Here we restrict attention to Q that are non-empty and such that there exist at least two elements

in A(q) for at least one q 6 Q. We make no other a priori assumptions concerning the spaces

{A(q _ Q) } and Q. In particular, we make no assumptions concerning their finiteness.

Example 1 (conventional prediction of the future): Say that our universe contains a system S

external to our computer that is closed in the time interval [0, T], and let u be the values of the ele-

ments of a set of canonical variables describing the universe, c_ is the t = T values of the compo-

nents of u that concern S, measured on some finite grid G of finite precision, q is this definition of

ct with G and the like fully specified. (So q is a partition of the space of possible u T, and therefore
A

of U, and c_ is an element of that partition.) Q is a set of such q's, differing in G, whose associated

answers our computer can (we hope) predict correctly.

The input to the computer is implicitly reflected in its t = 0 physical state, as our interpretation

of that state. In this example (though not necessarily in general), that input specifies what question

we want answered, i.e., which q and associated T we are interested in. It also delineates one of

/%

several regions R _ U, each of which, intuitively, gives the t = 0 state of S. Throughout each such

R, the system S is closed from the rest of the universe during t _ [0, T]. The precise R delineated

further specifies a set of possible values of u0 (and therefore of the Hamiltonian describing S), for

example by being an element of a (perhaps irregular) finite precision grid over U 0, G'. If, for some

R, q( u ) has the same value for all _ _ R, then this input R uniquely specifies what ct is for any

associated _.. If this is not the case, then the R input to the computer does not suffice to answer

question q. So for any q and region R both of which can be specified in the computer's input, R



mustbea subsetof a regionqt(c_) for somec_z.

Implicit in this definition is some means for correctly getting the information R into the com-

puter's input. In practice, this is often done by having had the computer coupled to S sometime

before time 0. As an alternative, rather than specify R in the input, we could have the input contain

a "pointer" telling the computer where to look to get the information R. (The analysis of these

papers holds no matter how the computer gains access to R.) In addition, in practice the input, giv-

ing R, q, and T, is an element of a partition over an "input section" of our computer. In such a

A

case, the input is itself an element of a finite precision grid over U, G". So an element of G" spec-

ifies an element of G (namely q) and element of G' (namely R.)

Given its input, the computer (tries to) form its prediction for c_ by first running the laws of

physics on a u 0 having the specified value as measured on G', according to the specified Hamilto-

nian, up to the specified time T. The computer then applies q(.) to the result. Finally, it writes this

prediction for c_ onto its output and halts. (More precisely, using some fourth finite precision grid

G"' over its output section, zt "writes out" (what we interpret as) its prediction for what region in

U the universe will be in at T, that prediction being formally equivalent to a prediction of a region

in 03 The goal is to have it do this, with the correct value of c_, by time z < T. Note that to have

the computer's output be meaningful, it must specify the question q being answered as well as the

answer c_, i.e., the output must be a physical state of the computer that we interpret as a question-

answer pair.

Consider again the case where there is in fact a correct prediction, i.e., where R is indeed a

subset of the region q't(_x) for some c_. For this case, formally speaking, "all the computer has to

do" in making its prediction is recognize which such region in the partition q that is input to the

computer contains the region R that is also input to the computer. Then it must output the label of

that region in q. In practice though, q and R are usually "encoded" differently, and the computer

must "translate" between those encodings to recognize which region q'I(o0 contains R; this trans-

lation constitutes the "computation".



Given this definition of a question, we can now define the input and output portions of a phys-

ical computer by generalizing our example of conventional computation.

Definition 2: i) A (computation) partition is a set of disjoint subsets of _l whose union equals U,

or equivalently a single-valued mapping from l_ into a non-empty space of partition-element

labels. Unless stated otherwise, any partition is assumed to contain at least two elements.

ii) In an output partition, the space of partition element labels is a space of possible "outputs",

(our}.

iii) In a physical computer, we require {OUT} to be the space of all pairs {OUTq E Q, OUT a

A(OUTq)}, for some Q and A(.) as defined in Def. (1). This space -- and therefore the associated

output partition -- is implicitly a function of Q. To make this explicit, often, rather than an output

partition, we will consider the full associated double (Q, OUr(.)), where OUT(.) is the output par-

A A

tition u e U ---+ OUT e {OUTq e Q, OUT a e A(OUTq)}. Also, we will find it useful to use an

A A

output partition to define an associated ("prediction") partition, OUTp(.) : u -+ (A(OUTq( u ),

A

OUTc_( u )).

iv) In an input partition, the space of partition element labels is a space of possible "inputs",

(IN}.

v) A (physical) computer consists of an input partition and an output partition double. Unless

explicitly stated otherwise, both of those partitions are required to be (separately) surjective.

Since we are restricting attention to non-empty Q, {OUT} is non-empty. We say that OUTq is the

"question posed to the computer", and OUTct is "the computer's answer". The surjectivity of IN(.)

and OUT(.) is a restriction on {IN} and {OUr}, respectively.

While motivated in large measure by the task of predicting the future, the definition of physi-

cal computation is far broader, concerning any computation that can be cast in terms of inputs,

questions about physical states of nature, and associated answers. This set of questions includes in

particular any calculation that can be instantiated in a physical system in our universe, whether



9

thatquestionisa _'prediction"or not. All suchphysicallyrealizablecalculationsaresubjectto the

resultspresentedbelow.

Evenin thecontextof predictionthough,thedefinitionof a physicalcomputerpresentedhere

is muchbroaderthancomputersthat work by the processoutlined in Ex. 1 (and thereforethe

associatedtheoremsarecorrespondinglyfurther-rangingin their implications).For example,the

computerin Ex. 1 hasthe laws of physicsexplicitly built into its "program". But our definition

allows otherkinds of "programs" aswell. Our definition also allowsotherkinds of information

input to thecomputerbesidesq andaregionR (whichtogetherwithT constitutethe inputsin Ex.

1). As discussedin paperI, we will only needto requirethat therebesome t = 0 state of the com-

puter that, by accident or by design, induces the correct prediction at t = "_.This means we do not

even require that the computer's initial state IN "accurately describes" the t = 0 external universe

in any meaningful sense. Our generalization of Ex. 1 preserves analogues of the grids G (in Q(.)),

G" (in IN(.)) and G"' (in OUT(.)), but not of the grid G'.

In fact, our formal definition of a physical computer broadens what we mean by the "input to

the computer", IN, even further. While the motivation for our definition, exemplified in Ex. 1, has

the partition IN(.) "fix the initial state of the computer's inputs section", that need not be the case.

IN(.) can reflect any attributes of u. An "input" -- an element of a partition of U -- need not

even involve the t = 0 state of the physical computer. In other words, as we use the terms here, the

computer's "input" need not be specified in some t = 0 state of a physical device. Indeed, our def-

inition does not even explicitly delineate the particular physical system within the universe that

we identify with the computer. (A physical computer is simply an input partition together with an

output partition.) This means we can even choose to have the entire universe "be the computer".

For our purposes, we do not need tighter restrictions in our definition of a physical computer.

Nonetheless, a pedagogically useful example is any localized physical device in the real world

meeting our limited restrictions. No matter how that device works, it is subject to the impossibility

results described below.
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ii) Intelligible computation

Consider a "conventional" physical computer, consisting of an underlying physical system

whose t = 0 state sets IN( _ ) and whose state at time "_ sets OUT( _a ), as in our example above.

We wish to analyze whether the physical system underlying that computer can calculate the future

sufficiently quickly. In doing so, we do not want to allow any of the "computational load" of the

calculation to be "hidden" in a restriction on the possible questions. Our computer possess a suffi-

cient degree of flexibility. We impose this via the following construction (see paper I for a detailed

justification):

Definition 3: Consider a physical computer C = (Q, IN(.), OUT(.)) and a l_-partition n. A func-

^

tion from U into B, f, is an intelligibility function (for n) if

A A A A

v u, _'_ U,n( u)=n(_')=f( u)=f(u').

A set F of such intelligibility functions is an intelligibili_ set for ft.

We view any intelligibility function as a question by defining A(f) to be the image of U under

f. If F is an intelligibility set for n and F c Q, we say that n is intelligible to C with respect to F. If

the intelligibility set is not specified, it is implicitly understood to be the set of all intelligibility

functions for n.

We say that two physical computers C l and C2 are mutually intelligible (with respect to the

pair {Fi}) iff both OUT 2 is intelligible to C 1 with respect to F 2 and OUT t is intelligible to C 2 with

respect to F I.

Plugging in, rt is intelligible to C iff V intelligibility functions f, 3 q _ OUTq such that q = f, i.e.,

such that A(q) = the image of U under f, and such that V _. _ U, q( _a ) = f( _ ). Note that since n

contains at least two elements, if n is intelligible to C, 30UTq E {OUTq } such that A(OUTq) =

B, an OUTq such that A(OUTq) = {0}, and one such that A(OUTq) = { 1 ). Usually we are inter-

ested in the case where rc is an output partition of a physical computer, as in mutual intelligibility.

Intuitively, an intelligibility function for a partition n is a mapping from the elements of n into
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B. rt is intelligible to C ifQ contains all binary-valued functions ofrt, i.e., if C can have posed any

question concerning the universe as measured on lz. This flexibility in C ensures that C's output

partition isn't "rigged ahead of time" in favor of some particular question concerning ft. Formally,

A I A

by the surjectivity of OUT(.), the requirement of intelligibility means that _ u _ U such that V u

A A A A

U, [OUTq( u' )]( u ) = f( u ).

iii) Predictable computation

We can now formalize the concept of a physical computer's "making a correct prediction":

Definition 4: Consider a physical computer C, partition n, and intelligibility set for n, E We say

that rt is weakly predictable to C with respect to F iff:

i) n is intelligible to C with respect to F, i.e., F c OUTq ;

ii)'v' f_ F, 3

A

IN(u) =

orJrp( ) =

IN 6 {IN} that weakly induces f, i.e., an IN such that:

IN

A A A

(A(OUTq( u )), OUTa( u )) = (A(f), f( u )).

Intuitively, condition (ii) means that for all questions q in F, there is an input state such that if C is

initialized to that input state, C's answer to that question q (as evaluated at '¢) must be correct.

Note that we even allow the computer to be mistaken about what question it is answering n i.e.,

for OUTq( u ) to not equal f -- so long as C's answer is correct. We will say a computer C' with

output OUT'(.) is weakly predictable to another if the partition OUT'p(.) is. If we just say "predict-

able" it will be assumed that we mean weak predictability.

As a formal matter, note that in the definition of predictable, even though f(.) is surjective onto

Aft) (cf. Def. 3), it may be that for some IN, the set of values f( u ) takes on when _a is restricted

so that IN( _t ) = IN do not cover all of Aft). The reader should also bear in mind that by surjectiv-

ity, V IN _ {[N}, _ _ _ 0 such that IN( _a) = IN.
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iv) Distinguishable computers

There is one final definition that we need before we can establish our unpredictability results:

Definition 5: Consider a set of n physical computers {C i = (Qi iNi(.), OUTi(.)) : i = 1..... n }. We

say {C i} is (input) distinguishable iff V n-tuples (IN t _ {IN t }..... IN n _ {INn}), _ _a _ 0 such

that 'q i, INi( _a ) = IN i simultaneously.

We say that {C i } is pairwise (input) distinguishable if any pair of computers from {C i } is distin-

guishable, and will sometimes say that any two such computers C 1 and C 2 "are distinguishable

from each other". We will also say that {C i} is a maximal (pairwise) distinguishable set if there

are no physical computers C _ {C i} such that C _ {C i } is a (pairwise) distinguishable set.

iv) The impossibility of posing arbitrary questions to a computer

The first result in paper I states that for any pair of physical computers there are always

binary-valued questions about the state of the universe that cannot even be posed to at least one of

those physical computers:

Theorem 1: Consider any pair of physical computers {C i : i -- 1, 2}. Either 3 finite intelligibility

set F 2 for C2 such that C 2 is not intelligible to C t with respect to F 2, and/or 3 finite intelligibility

set F 1 for C 1 such that C l is not intelligible to C 2 with respect to F 1.

Thm. 1 reflects the fact that while we do not want to have C's output partition "rigged ahead of

time" in favor of some single question, we also cannot require too much flexibility of our com-

puter. It is necessary to balance these two considerations. Accordingly, before analyzing predic-

tion of the future, to circumvent Thm. 1 we must define a restricted kind of intelligibility set to

which Thm, 1 does not apply:
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Definition 6: An intelligibility function f for anoutputpartitionOUT(.) is question-independent

A A

itfV u, u'_ (d:

A Ap

OUTp(u) = OUTp( u )

A A_

f(u)=f(u).

An intelligibility set as a whole is question-independent if all its elements are.

We write C 1 > C 2 (or equivalently C 2 < C 1) and say simpiy that C 2 is (weakly) predictable to

C 1 (or equivalently that C ! canpredict C 2) if C 2 is weakly predictable to C t for all question-inde-

pendent finite intelligibility sets for C 2.

Similarly, from now on we will say that C 2 is intelligible to C 1 without specification of an

intelligibility set if C 2 is intelligible to C I with respect to all question-independent finite intelligi-

bility sets for C 2.

Intuitively, f is question-independent if its value does not vary with q among any set of q all of

which share the same A(q). As an example, say our physical computer is a conventional digital

workstation. Have a certain section of the workstation's RAM be designated the "output section"

of that workstation. That output section is further divided into a "question subsection" designating

(i.e., "containing") a q, and an "answer subsection" designating an cz. Say that for all q that can be

designated by the question subsection A(q) is a single bit, i.e., we are only interested in binary-

valued questions. Then for a question-independent f, the value of f can only depend on whether

the answer subsection contains a 0 or a 1. It cannot vary with the contents of the question subsec-

tion.

A detailed example of a pair of mutually (question-independent) intelligible computers is pre-

sented in paper I. In addition to this explicit demonstration that Thm. 1 does not hold for question-

independent intelligibility sets, examples 2, 2', and 2" of paper I establish that:
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a)Therearepairsof input-distinguishablephysicalcomputers,C1,C2,in whichC2is predictable

to Ct, Cl > C2;

b) GivenCl andC2asin (a), we could have yet another computer C 3 that also predicts C 2 (i.e.,

such that C 3 > C 2) while being distinguishable from CI;

c) Given C 1 and C 2 as in (a), we could have a computer C 4, distinguishable from both C L and C 2,

where C 4 > C _, so that C 4 > C l > C 2. We can do this either with C 4 > C 2 or not.

ii) The impossibility of assuredly correct prediction

To establish our main impossibility result in paper I we started with the following lemma:

Lemma 1: Consider a physical computer C I. If q any output partition OUT 2 that is intelligible to

C 1, then _ qt e QI such that A(q 1) = B, aql e Q1 such that A(q 1) = {0}, and a ql e Q1 such that

A(q t) = {I }.

This can be used to establish paper I's central theorem:

Theorem 2: Consider any pair of distinguishable physical computers {C i : i = I, 2 }. It is not pos-

sible that both C 1 > C 2 and C t < C 2.

Restating it, Thm. 2 says that either 3 finite question-independent intelligibility set for C l, F 1,

such that C t is not predictable to C 2 with respect to F t, and/or 3 finite question-independent intel-

ligibility set for C 2, F 2, such that C 2 is not predictable to C t with respect to F 2.

Thin. 2 holds no matter how large and powerful our computers are; it even holds if the "phys-

ical system underlying" one or both of our computers is the whole universe. It also holds if instead

C 2 is the rest of the physical universe external to C t. A set of implications of Thm. 2 for various

kinds of physical prediction scenarios are discussed in paper I. As also discussed there, impossi-

bility results that are in some senses even stronger than those associated with Thm. 2 hold when
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wedo not restrictourselvesto distinguishablecomputers,aswedo in Thin. 2.

3. THE MATHEMATICAL STRUCTURE RELATING PHYSICAL COMPUTERS

There is a rich mathematical structure governing the possible predictability relationships

among sets of physical computers, especially if one relaxes the presumption (obtaining in much of

paper I) that the universe can contain multiple copies of C. This section presents some of that

structure.

i) The graphical structure over a set of computers induced by weak predictability

While it directly concerns pairs of physical computers, Thin. 9.2also has implications for the

predictability relationships within sets of more than two computers. An example is the following:

Corollary 1: It is not possible to have a fully distinguishable set of n physical computers {C i}

such that C z > C 2 > ... > C n >C 1

Proof: Hypothesize that the corollary is wrong. Define the composite device C* - (IN"(.) =

l--[inil [Ni(.), QI, OUTI(.)). Since {C i} is fully distinguishable, IN*(.) is surjective. Therefore C*

is a physical computer.

Since by hypothesis C n is intelligible to C n-l, _ OUTn-lq such that A(OUTn-lq) = B. Also,

since C n'2 > C n-l, ::t IN n'2 E (IN n'2} such that V u _ 1_ for which A(OUWn'lq( u )) = B,

INn'2( u ) = IN n'2 =* OUTn'2ct ( u ) = OUTn-lct( u ). Iterating and exploiting full distinguishabil-

.... ^ tq( ^ ^ .., inn-2( ^ity, ::1(IN 1, IN n'2) such that V u _ 1_ for which A(OUT n- u )) = B, (INI( u ), u ))

A A A

= (IN 1..... IN n'2) =* OUT*( u ) = OUTt( u ) = OUTn't( _a ). The same holds when we restrict u

lq( " " A(OUTn-Iq( "so that the space A(OUT n" u )) = { 1 }, and when we restrict u so that u )) = {0}.

Since by hypothesis C a is intelligible to C n'l, and since IN*(.) is surjective, this result means

that C a is predictable to C*. Conversely, since C n > C l by hypothesis, the output partition of C* is
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predictableto Cn,and thereforeC" is. Finally,since{C i} is fully distinguishable, C" and C n are

distinguishable. Therefore Thin. 2 applies, and by using our hypothesis we amve at a contradic-

tion. QED.

What are the general conditions under which two computers can be predictable to one

another? By Thm. 2, we know they aren't if they're input-distinguishable. What about if they're

one and the same? No physical computer is input-distinguishable from itself, so Thin. 2 doesn't

apply to this issue. However it still turns out that Thm. 2's implication holds for this issue:

Theorem 3: No physical computer is predictable to itself.

Proof. Assume our corollary is wrong, and some computer C is predictable to itself. Since by def-

inition predictability implies intelligibility, we can apply Lemma 1 to establish that there is a q _

OUTq, q', such that A(q') : B. Therefore one question-independent intelligibility function for C is

A

the function f from u _ l_l -_ B that equals 1 if A(OUTq( u )) = B and OUTc_( u ) = 0, and equals

0 otherwise. Therefore by hypothesis 3 IN _ {IN} such that IN( u ) = IN _ A(OUTq( u )) = B

A A A A A

and OUTa( u ) = f( u ). But if A(OUTq( u )) = B, then f( u ) = NOT[OUTa( u )], by definition of

A A

f(.). Since IN is surjective, this means that there is at least one u _ U such that A(OUTq( u )) - B

A A

and OUTc_( u ) - NOT[OUTc_( u )1. This is impossible. QED.

Intuitively, this result holds due to the fact that a computer cannot make as its prediction the logi-

cal inverse of its prediction. An important corollary of this result is that no output partition is pre-

dictable to a physical computer that has that output partition. Combining Thm. 3 and Coroll. 1 and

identifying the predictability relationship with an edge in a graph, we see that fully distinguish-

able sets of physical computers constitute (unions of) directed acyclic graphs.
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ii) Weak predictability and variants of error correction

When considering sets of more than two computers, it is important to realize that while it is

symmetric, the input-distinguishability relation need not be transitive. Accordingly, separate pair-

wise distinguishable sets of computers may partially "overlap" one another. Similarly, stipulating

the values of the inputs of any two computers in a pairwise-distinguishable set may force some of

the other computers in that set to have a particular input value.

Coroll. I does not apply to such a set. As it turns out though, Thin. 2 still has strong implica-

tions even for a set of more than two computers that is not fully distinguishable, so long as the set

is pairwise distinguishable. Define a god computer as any physical computer in a pairwise distin-

guishable set such that all other physical computers in that set are predictable to the god computer.

Then by Thm. 2, each such set can contain at most one god computer. There is at most one com-

puter in any pairwise distinguishable set that can correctly predict the future of all other members

of that set, and more generally at most one that can accurately predict the past of, observe, and/or

control any system in that set (see paper I). In particular, for any human being physical computer,

for any pairwise distinguishable set of computers including that human, there can be at most one

god computer. (Lest one read too much into the phrase "god computer", note that like any other

computer, a god computer is merely a set of partitions, and need not correspond to any localized

physical apparatus.)

Even a god computer may not be able to correctly predict all other computers in its distin-

guishable set simultaneously. The input value it needs to adopt to correctly predict some C 2 may

preclude it from correctly predicting some C 3 and vice-versa. One way to analyze this issue is to

consider a composite partition OUT 2x3 defined by the output partitions of C 2 and C 3. We can then

investigate whether and when our god computer can weakly predict the composite output parti-

tion. The following definition formalizes this:

Definition 7: Consider a pairwise distinguishable set {C i} with god computer C 1. Define the par-

titions OUT ixj ( _ _ 0 ) - (OUTqJ ( _a), OUT _J ( _ )), where each answer map OUT i_j ( _ ) _
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A A A A t

(OUTlet( u ), OUT2j u )), and each question lOUT ix-i ( u )1 -- the mapping given by u _ U
q

tq( /' " [OUT2q( " "([OUT u )1( u' ), u )1( u' )). Then C i is omniscient if OUT 2x3× is weakly predictable

to C t.

Intuitively, OUT ixj is just the double partition (OUTi(.), OUTJ(.)) = ((OUTiq(.), oUTlet(.)),

(OUTJq(.), OUTJa(.)), re-expressed to be in terms of a single question-valued partition and a sin-

gle answer-valued partition. To motivate this re-expression, for any two questions qi E Qi and qJ

QJ, let qi x q-/be the ordered product of the partitions qi and qJ; it is the partition assigning to every

^ ^ ^, A OUTiq( ^ ^point u' _ U the label (qi( u ), qJ( u' )). Then if u ) is the question qi and ogTJq( u ) is

the question qJ, OUTiq j ( _2)is the question qix q.J. OUTiXaj is defined similarly, only with one

fewer levels of "indirection", since answer components of output partitions are not themselves

partitions (unlike question components).

Note that even though any OUTi(.) and ouTJ(.) are both surjective mappings, OUT ixJ need

not be surjective onto the set of quadruples {qi e Qi, qj e QJ, cci _ A(Qi), otJ e A(QJ)}. It is

straight-forward to verify that an omniscient computer is a god computer.

In general, one might presume that two non-god computers in a pairwise-distinguishable set

could have the property that, while individually they cannot predict everything, considered jointly

they would constitute a god computer, if only they could work cooperatively. An example of such

cooperativity would be having one of the computers predict when the other one's prediction is

wrong. It turns out though that under some circumstances the mere presence of some other com-

puter in that pairwise distinguishable set may make such error-correction impossible, if that other

computer is omniscient.

As an example of this, say we have three pair-wise distinguishable computers C I, C 2, C 3,

where C 3 always answers with a bit (i.e., 71q3 _ Q3 such that A(q 3) _; B). We will want C2's out-

put to "correct" C3's predictions, and have those predictions potentially concern C l. So have C z

be intelligible to C 3. As a technical condition, assume not only that C3's output can be any of its

possible question-answer pairs, but also that for any of its questions, for any of the associated pos-
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sible answers, there are situations where that answer is correct (so that C 2 should leave C3's

answer alone in those situations). Then it turns out that due to Thin. 2, ifC t is omniscient, it is not

possible that C 2 always correctly outputs a bit saying whether C3's answer is the correct response

to C3's question. More formally,

Corollary 2: Consider three pair-wise distinguishable computers Ct, C 2, C 3, where _] q3 _ Q3

such that A(q 3) _ B. Assume that C l is an omniscient computer, and that C l is intelligible to C 3.

Finally, assume that V pairs (q3 _ Q3 or3 _ A(q3)), 3 u _ 0 such that both OUT3q( u ) = q3 and

^ [OUT3q( ^ ^ ^ ^q3( u ) = cc3 (i.e., u )]( u ) = cc3). Then it is not possible that _' u _ 0, OUT2a( u ) = 1

OUT3q ^ ^ OUT3ct ^if [ ( u )]( u ) = ( u ), 0 otherwise.

Proof: Hypothesize that the corollary is wrong. Construct a composite device C 2"3, starting by

having IN2-3(.) = OUT3q(.), Q2-3 _ Q3 and OUT2-3q(.) = OUT3q(.). Next define the question 0 by

^ OUT3c_ ^ OUT2 ^ ^ OUT3c_ ^the rule 0( u ) -= NOT[ ( u )] if ( u ) = 0, 0( u ) - ( u ) otherwise. (N.b. no

assumption is made that 0 _ Q2-3.) To complete the definition of the composite computer C 23,

OUT2-3ct ^ ^have ( u ) = 0( u ).

^ ^ [OUT3q( ^ ^Now by our hypothesis, '7' u _ _, 0( u ) = u )]( u ). By the last of the conditions

specified in the corollary, this means that V (q2-3 6 Q2-3, _2-3 E A(q2"3)), :::Iu such that

OU,T2-3q( _ ) = q2-3 and OUT2-3e_ ( u ) = _2-3. So C2-3 allows all possible values of {OUT2-3}, as

a physical computer must. Due to surjectivity of OUT3q, it also allows all possible values of the

space {IN 2-3 }. To complete the proof that C 2-3 is a (surjective) physical computer, we must estab-

OUT2-3cc ( A(OUT2-3q( ^ ^lish that _a ) E u )) V u _ _. To do this note that if for example

A(OUT2-3q( ^ A(OUT3q( ^ OUT2-3ot( ^u )) = u )) = { 1 }, then since it is always the case that the u ) =

OUT2-3q ^ ^ OUT3q ^ ^ UT2-3cc ^ OUT2-3 a ^[ (u)](u ) = [ (u)](u ), O (u) = 1. Similarly (u)

A(OUT2-3q( ^ A(OUT2-3q( ^ A(OUT2-3q( ^u )) when u )) = {0}. Finally, if u )) = B, then the simple

fact that OUT2"3ct ( _a ) _ B always means that OUT2"3a( u ) _ A(OUT2"3q( _a )).

Since C t is intelligible to C 3 and Q2-3 = Q3, C t is intelligible to C 2"3. Moreover, given any
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question q2-3 E Q2-3, 3 associated IN 2-3 E {IN 23} such that V u _ I__ for which 1N23( u ) :

" q2-3. OUT2-3a( ^ q2-3( ^ ^IN 23, OUT23( u ) = But as was just shown, u ) = u ) for that u. Therefore

C t is predictable to C 2-3.

Next, since C l is omniscient, OUT 2×3 is intelligible to C t. Therefore any binary function of

(A(OUT2q( ^ A(OUT3q( ^ ^ ^the regions defined by quadruples u )), u )), OUT2c_( u ), OUT3cc( u )) is

an element of QI. Any single such region is wholly contained in one region defined by the pair

(A(OUT23q( u )), OUT23a( u )) though. Therefore any binary function of the regions defined by

such pairs is an element of QI. Therefore C 23 is intelligible to QL. Similarly, the value of any

such binary function must be given by OUTI_( u ) whenever INL( _2) equals some associated IN I.

So C 23 is predictable to C 1.

Finally, since C _ and C 3 are input-distinguishable, so are C 1 and C 2-3, and therefore Thm. 2

applies. This establishes that our hypothesis results in a contradiction. QED.

This result even holds if OUT 2x3 is only intelligible to C l, without necessarily being predictable

to it.

Coroll. 2 can be viewed as a restriction on the efficacy of any error correction scheme in the

presence of a (distinguishable) omniscient computer. There are other restrictions that hold even in

the absence of such a third computer. An example is the following implication of Thin. 2:

Corollary 3: Consider two distinguishable mutually intelligible physical computers C 1 and C 2,

where both A(OUTIq) _ B and A(OU"r2q) _ B _' OUTLq E QL and OUT2q E Q2. It is impossible

that C 1 and C 2 are "anti-predictable" to each other, in the sense that for each of them, the predic-

tion they make concerning the state of the other can always be made to be wrong by appropriate

choice of input.

Proof: By assumption C 1 and C 2 are mutually intelligible. So what we must establish is whether

for both of them, for all intelligibility functions concerning the other one, there exists an appropri-
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atevalueof INi suchthatthat intelligibility functionis incorrectlypredicted.

Hypothesizethatthecorollary is wrong.ThenV question-independentintelligibility functions

for Cl, fl ::7IN2_ (IN 2 } such that IN"( L]) = IN 2 implies that [A(OUT2q( _a)) -- NOT[A(fZ)]] ^

[OUT2c_( _a ) = NOT[f z( _ )]]. However by definition of question-independent intelligibility func-

tions, given any such fi, there must be another question-independent intelligibility function for

C l, f3 defined by f3(.) = NOT(fI(.)). Therefore :zqIN -'2_ {IN"} such that [N2( _ ) = IN" implies

") A _, A A

that [A(OUT'q( u )) = A(f3)] ^ [OUT'a( u ) = f3( u )].

This NOT(.) transformation bijective[y maps the set of all question-independent intelligibility

functions for C 2 onto itself. Since that set is finite, this means that the image of the set under the

NOT(.) transformation is the set itself. Therefore our hypothesis means that all question-indepen-

dent functions for C l can be predicted correctly by C 2 for appropriate choice of IN 2 _ {IN2}. By

similar reasoning, we see that C 1 can always predict C 2 correctly. Since C 1 and C 2 are distinguish-

able, we can now apply Thin. 2 and arrive at a contradiction. QED.

iii) Strong predictability

At the other end of the spectrum from distinguishable computers is the case where one com-

puter's input can fix another's, either by being observed by that other computer or by setting that

other computer's input more directly. The following variant of predictability captures this rela-

tionship:

Definition 8: Consider a pair of physical computers C 1 and C 2. We say that C 2 is strongly predict-

able to C l (or equivalently that C 1 can strongly predict C2), and write C l >> C 2 (or equivalently

C 2 << C t) iff:

i) C 2 is intelligible to C1;

ii) V question-independent intelligibility functions for C 2, qL, V IN 2 _ {IN2},

3 IN t E {IN t } that strongly induces the pair (ql, IN2), i.e., such that:

A

INt(u) = IN t
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[OUTIp( ^)=(A(ql),qt(_))] ^ [IN2( u)=IN2].

Intuitively, if C l can strongly predict C 2, then for any IN 2 and associated implication OUT2p

for any computation C 2 might undertake -- there is an input to C 1 that is uniquely associated

with IN" and that causes C l to output (any desired question-independent intelligibility function

of) OUT2p. Intuitively, there is some invertible "translating" map that takes C2's input and

"encodes" it in Cl's input, in such a way that C t can "emulate" C 2 running on C2's input, and

thereby produce C2's associated output. In this way C t can emulate C 2, much like universal Tur-

ing machines can emulate other Turing machines. (Recall the definition of universal Turing

machine, and see the definition of a universal physical computer below.)

Strong predictability of a computer implies weak predictability of that computer. (Unlike with

weak predictability, there is no such thing as strong predictability of a partition.) So for example

both Thm. 3 and Coroll. 1 still hold if they are changed by replacing weak predictability with

strong predictability. However weak predictability does not imply strong predictability. Moreover,

the mathematics for sets of physical computers some of which are strongly predictable to each

other (and therefore not distinguishable) differs in some respects from that when all the computers

are distinguishable (the usual context for investigations of weak predictability). An example is the

following result, which shows that strong predictability always is transitive, unlike weak predict-

ability (cf. Ex. 2" in paper I):

Theorem 4: Consider three physical computers {C 1, C 2, C 3 }, and a partition r_, where both C 3

and rc are intelligible to C t.

i) C 1 >>C2 >g=:=_C 1 >71:;

ii) C I>>C 2>>C 3_C I>>C 3.

Proof: To prove (i), let f be any question-independent intelligibility function for ft. By Lemma 1,
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the everywhere 0-valued question-independent intelligibility function of n is contained in Ql, and

since C L > C 2, there must be an IN 1such that INI( _ ) = IN L =_ OUTlc_( _ ) = 0. The same is true

for the everywhere l-valued function. Therefore to prove the claim we need only establish that for

every question-independent intelligibility function for n, f, for which A(f) = B, f _ Ql, and there

exists an IN L such that INL( _ ) = IN 1 _ OUTIa( _ ) = f( _ ). Restrict attention to such f from

now on.

Define a question-independent intelligibility function for C 2, 12, such that A(I 2) = B, and such

that for all _ for which A(OUTq( u )) = B, I2( u ) = OUT2a( _a). (Note that since C 2 > n, there

both exist ^ OWT2p( ^ OWT2p( ^u for which u ) = (B, I) and _ such that u ) = (B, 0.) Now by hypoth-

esis, for any of the f we are considering, 3 IN2f e {IN 2 } such that IN2( _ ) = IN2f =_ OUT2p( u )

= (B, f(_)). However the fact thatC l >>C 2=:_::IIN 1 e {IN 1} such that INI(_)=IN 1

IN2( u ) = IN2f and such that OUTtp( _ ) = (A(I2), I2( _ )) = (B, I2( _t )). Since IN2( u ) = IN2t •for

^ OUT2ct ^ ,, OUT2cc ^ OUT2p ^ ^such a u, A( ( u )) = B, and therefore I2( U ) = ( U ). SO ( u ) for such a u

equals (B, OUT2a( ,_ )). So for that IN 1, OUTlp( _ ) = (A(f), f( _ )).

This establishes (i). The proof for (ii) goes similarly, with the redefinition that INlf fixes the

value of IN 3 as well as ensuring that OUT2p( _ ) = (Aft), f( _ )). QED.

Strong predictability obeys the following result which is analogous to both Thm.'s 2 and 3:

Theorem 5: Consider any pair of physical computers {ci: i = 1, 2 }. It is not possible that both C 1

>> C 2 and C t << C 2.

Proof: Choose any IN 2. For any question-independent intelligibility function of OUT2p, f, there

must exist an l'Nlf E {IN l } that strongly induces IN 2 and f, since C l >> C 2. Label any such IN l as

^ A ^ A

INtf (IN 2 being implicitly fixed). So for any such f, { u • INI( u ) = INtf} _ { u • IN2( u ) = IN2}.

However since OUT2p is not empty, there are at least two question-independent intelligibility

functions of OUT2p, fl and f2, where A(fl) # A(f2) (of. Lemma 1). Moreover, the intersection
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^ " [Ntt.t ^ t( ^ iNlt,{ u' INI(u) = } _ { u" IN u)= } = _, sincethesetwo setsinducedifferent

A(OUTIq) (namely A(f t) and A(f2), respectively).This meansthat { u • [Nt( u ) = INtt.i} c

{ _a" IN2( u ) = IN2}. On theotherhand,for thesamereasons,theremustalsoexist an IN2that

[Nlfl" ^ ^ ^ ^strongly induces Therefore3 IN2'such that { u" [N2(u )= IN2'} _ { u " INl( u ) =

[Nlfl ^ ^ ^ ^}. So { u • IN2( u ) = IN 2'} c { u • IN2( u ) = IN 2 }. This is not compatible with the fact that

IN2(.) is a partition. QED.

Many of the conditions in the preceding results can be weakened and the associated conclu-

sions still hold. Indeed, this is even true for Thin. 2, where we can weaken the definition of "intel-

ligibility" and still establish the impossibility of having both C I > C 2 and C 2 > C I. (For example,

that impossibility will still obtain even if neither C l nor C 2 contains B-valued questions, if they

instead contain all possible functions mapping each others' values of OUTp onto {0, 1, 2}.) These

weakened version are usually more obscure though, which is why they are not presented here.

iv) Physical computation analogues of Halting theorems in Turing machine theory

There are several ways that one can relate the mathematical structure of physical computation

to that of conventional computer science. Here we sketch the salient concepts for one such rela-

tion coupling physical computation and the mathematical structure governing Turing machines

(TMs).

A TM is a device that takes in an input string on an input tape, then based on it produces

a sequence of output strings, either "halting" at some time with a final output string, or never halt-

ing. If desired, the fact that the halt state has / hasn't been entered by any time can be reflected in

a special associated pattern in the output string, in which case the sequence of output strings can

always be taken to be infinite. As explicated above, in the real world inputs and (sequences of)

^

outputs are elements of partitions of U. So in one translation of TMs to physical computers,

strings on tapes are replaced with elements of the partitions IN(.) and OUT(.). Rather than

through a set of internal states, read/write operations, state-transition rules, etc., the transforma-
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tion of inputs to outputsin a physicalcomputeris achievedsimply throughthe definition of the

pair or"an associatedinput partition and outputpartition. For a TM that declaresin its output

string whetherit hashalted,the physicalcomputationanalogueof whethera computationwill

ever halt is simply whether u is in somespecial subsetof {OUT} Although not formally

required,in therealworld IN(.) andOUT(.) usuallydiffer. In this theyareanalogousto TM's with

multiple tapesratherthanconventionalsingle-tapeTMs.

An alternativeto identifying the full outputpartitionof aphysicalcomputerwith a TM's out-
A

put tape, motivated by the definition of predictability, is to identify the coarser partition u --o

A

OUTp( u ) with a TM's output tape. (This is loosely analogous to a TM's being able to overwrite

the "question" originally posed on its tape when producing its "answer" on that tape.) We will

adopt this identification from now on, and use it to identify the physical computation analogue of

A A

a TM as an input partition together with the surjective mapping u -+ OUTp( u ) of an associated

output partition.

This identification motivates several analogues of the Halting theorem. Since whether a partic-

ular physical computer C 2 "halts" or not can be translated into whether its output is in a particular

region, the question of whether C 2 halts is a particular intelligibility function of C 2. Correctly

answering the question of whether C 2 halts means predicting that intelligibility function of C 2. In

the context of physical computation it is natural to broaden the issue to concern all intelligibility

functions of C 2. Accordingly, in this analogue of the claim resolved for TM's (in the negative) by

the Halting theorem, one asks if it is possible to construct a physical computer C 1 that can predict

any computer C 2. To answer this, consider the case where C2 is a copy of C t (cf. Def. 2(v) of

paper I for a formal definition of a physical computer's "copy"). Then by applying Thm.'s 2, 3 and

5, one sees that the answer is no, in agreement with the Halting theorem. (See also Coroll. 3.)

There exist a number of alternative physical computer analogues of the Halting problem.

Though not pursued at length here, it is worth briefly presenting one such alternative. This alterna-

tive is motivated by arguing that, in the real world, one is not interested so much in whether the

computation will ever "halt", but rather whether the associated output is "correct". If we take
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"correct" to be relativeto a particularquestion,this motivatesthe following alternativeanalogue

of theHalting theorem:

Theorem 6: Givenasetof physicalcomputers{Ci}, _ Cl 6 {Ci} suchthatV C2 6 {C i},

i) C 2 is intelligible to Cl;

ii) 'v' q2 _ Q2 3 IN l _ {IN t } such that INl( _ ) = IN t _ OUTLcL( t] ) = 1 iff q2( t] ) =

2 a ^OUT (u).

Proof: Choose C 2 such that OUT2(.) = OUTI(.). (If need be, to do this simply choose C 2 = Cl.)

Then in particular, OUTIa(.) = OUT2et(.). Now since C 2 is intelligible to C s by hypothesis, by

Lemma 1 3 ql _ Q1 such that A(q 1) = {0}, and therefore 3 q2 6 Q2 such that A(q 2) = {0}. For

that q20UTta( t] ) = 1 iff 0 = OUTSc_( l] ), which is impossible. QED.

A TM T 1 can emulate a TM T 2 if for any input for T 2, T s produces the same output as T 2

when given an appropriately modified version of that input. (Typically, the "modification"

involves pre-pending an encoding of T 2 to that input.) The analogous concept for a physical com-

puter is strong predictability; 0 ne physical computer can "emulate" another if it can strongly pre-

• '_

dict that other one. Intuitively, the two components of T t's emulating T-, involving T2's input and

its computational behavior, respectively, correspond to the two components of the requirement

concerning IN I values that occur in the definition of strong predictability. The requirement con-

cerning IN l values that is imposed by ensuring that OUTtp( u ) = (A(q), q((a)) for any q (that is

an intelligibility function) for C 2 is analogous to encoding (the computational behavior of) the

TM T 2 in a string provided to the emuiating TM, T t. Requiring as well that the value IN s ensures

that IN2((a) = IN 2 is analogous to also including an "appropriately modified" version of T2's

input in the string provided to T I. (Note that any mapping taking IN 2 _ {IN 2} to an IN s that in

turn induces that starting IN 2 is invertible, by construction.) This motivates the following defini-

tion of the analogue of a universal TM:
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Definition 9: A universal physical computer for a set of physical computers is a member of that

set that can strongly predict all other members of that set.

Note that rather than reproduce the output of a computer it is strongly predicting, a universal

physical computer produces the value of an intelligibility function applied to that output. This

allows the computers in our set to have different output spaces from the universal physical com-

puter. However it contrasts with the situation with conventional TM's, being a generalization of

such TM's.

v} Prediction complexity

In computer science theory, given a universal TM T, the algorithmic complexity of an output

string s is defined as the length of the smallest input string s' that when input to T produces s as

output. To construct our physical computation analogue of this, we need to define the "length" of

an input region of a physical computer. To do this we start with the following pair of definitions:

Definition 10: For any physical computer C with input space {IN}:

i) Given any partition n, a (weak) prediction input set (of C, for n) is any set s _ {IN} such

that both every intelligibility function for rr is weakly induced by an element of s, and for any

proper subset of s at least one such function is not weakly induced. We write the space of all weak

prediction input sets of C for n as C-t(n).

ii) Given any other physical computer C' with input space {IN'} for which the set of all ques-

tion-independent intelligibility functions is {f'}, a strong prediction input set of C, for the triple

C', in'_ {IN'}, andf' _ {f'}, is any set s t:::::{IN} such that both every pair (f' _ f ', IN' E in') is

strongly induced by a member of s, and for any proper subset of s at least one such pair is not

strongly induced. We write the space of all strong prediction input sets (of C, for C', in', andf') as

c't(c ', in', f').
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Intuitively, the prediction set of C for rt/C' is a minimal subset of {IN} that is needed by C for rt /

C' to be predictable to C. In the case of strong prediction, we provide the associated definition the

extra flexibility of being able to restrict what intelligibility functions are being considered.

Now, to define the physical computation analogue of algorithmic information complexity,

identify the "length of an input string" with the negative logarithm of the volume of a subset of the

partition IN(.):

Definition 11: Given a physical computer C and a measure d_t over 1_:

A A A

i) Define V(in _ {IN}) as the measure of the set ofalI u 6 U such that IN( u ) _ in, and define the

length of in (with respect to IN(.)) as l(in) - -ln[V(in)];

ii) Given a partition _ that is predictable to a physical computer C, define the prediction complex-

itv of rt (with respect to C), c(rt ] C), as min o _ C-l(rt_ [!(9)].

We are primarily interested in prediction complexities of binary partitions, in particular of the

binary partitions induced by the separate single elements of multi-element partitions. (The binary,

A A A A

partition induced by some p _ re' is { u s.t. re'( u ) = p, u s.t. _z'( u ) :x p}.) To see what Def. 1 l(ii)

A

means for such a partition, say you are given some set G c U (i.e., you are given a binary partition

of U). Suppose further that you wish to know whether the universe is in a, and you have some

computer C to use to answer (all four intelligibility functions of) this question. Then loosely

speaking, the prediction complexity of o with respect to C is the minimal amount of Shannon

information that must be imposed in C's inputs in order to be assured that C's output correctly

answers that question. In particular, if c_ corresponds to a potential future state of some system S

external to C, then e(o [ C) is a measure of how difficult it is for C to predict that future state of

S. Is

In many situations it will be most natural to choose dl.t to be uniform over accessible phase

A

space volume, so that the complexity of in is the negative physical entropy of constraining u to lie
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in in. But that need not be the case. For example, we can instead define d_t so that the volume of

each element of the associated {IN} is some arbitrary positive real number. In this case, the

lengths of the elements of {IN} provides us with an arbitrary ordering over those elements.

The following example illustrates the connection between lengths of regions in and lengths of

strings in TM's"

Example 3: In a conventional computer (see Ex. 1 above), we can define a "partial string" s

(sometimes called a "file") taking up the beginning of an input section as the set of all "complete

strings" taking up the entire input section whose beginning is s. We can then identify the input to

the computer as such a partial string in its input section. (Typically, there would be a special fixed-

size "length of partial string" region even earlier, at the very beginning of the input section, telling

the computer how much of the complete string to read to get that partial string.) If we append cer-

tain bits to s to get a new longer input partial string, s', the set of complete strings consistent with

s' is a proper subset of the set of complete strings consistent with s. Assuming our measure d,u. is

independent of the contents of the "length of partial string" region, this means that l(s') > l(s).

This is in accord with the usual definition of the length of a string used in Turing machine the-

ory. Indeed, if s' contains n more bits than does s, then there are 2 n times as many complete strings

consistent with s as there are consistent with s'. Accordingly, if we take logarithms to have base 2,

l(s') = I(s) + n.

A

Say we want our computer to be able to predict whether u lies in some set a. (To maintain the

analogy with Turing machines, _ could delineate an "output partial string". This could be done for

example by delineating a particular OUTp value, perhaps even one in some other computer.) In

A A

the usual way, this corresponds to having the binary partition { u ff _, u ff a} be weakly predict-

able to our computer. So the prediction complexity of that prediction is the length of the shortest

region of our input space that will weakly induce that prediction. (Note that since we require that

all four intelligibility functions of (r be induced, more than one input "partial string" is required

for that induction, in general.)
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Thefact thatOUT0valuesspecifythesetA(OUTq)makesworking with Def.'s 10and 11abit

messy. In particular, to relate prediction complexity to properties of the associated universal phys-

ical computer we must use a set of "identity" intelligibility functions defined as follows:

Definition 12 (i): Given a space X c B and a physical computer C with input and output spaces

{IN], and {OUT], respectively,

{ICx], is the set of all question-independent intelligibility functions of C where A(ICx) = X,

" ICx( ^ ^and where 'v' u such that A(OUTq( _ )) = X, u ) = OUTa( u ).

We also will need the following definition:

Definition 12 (ii): Given a space X c B and a physical computer C with input and output spaces

{IN} and {OUT], respectively,

when X is a set C'I(X) is also a set, defined as those IN _ {IN], such that IN( _ ) = IN

A(OUTq( fi )) = X.

So for example, if X = B, a pair (IN 2 _ [C2]-I(X), I2x _ {I2x}) is an input to C 2 and an intelligi-

bility function of C2's output, respectively. That input IN 2 induces an associated output question,

OUT2q, ^q2 _ that takes on (both) B values as one varies over the u input to it. Similarly, the intel-

ligibility function IN2x takes on (both) B values as one varies over the inputs to it.

Using these definitions, we now bound how much more complex a partition can appear to C 1

than to C 2 if C t can strongly predict C 2. Though somewhat forbidding in appearance, intuitively,

the bound simply reflects the complexity cost of "encoding" C 2 in C l's input.

Theorem 8: Given any partition r_ and physical computers C t and C 2 where C l >> C 2 > r_,

i) c(rtl Cl) ¢(nl C2) _<
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In[o(2rtj] -In[3] +

max {X=B, IN2_[C2]I(X). [2X_ {12X} }

_ * I[ IN21min IX=B, [N2_[C']'I(x)}

or alternatively,

ii) c(nlC l) c(rtlC 2) _<

In[o(2X)] +

,) O

rain {X=B. [N-_[C'I'I(x), I2X6 {I2x} }

rain {X=B, [N2_[C2II(x)} ![ IN 2 ] .

1-1 -_ -,
I[(C ) (C',IN 2,I" x) l

I[ (Cl)-t(C 2, IN 2, I2x) ]

Proof: Given any intelligibility function f for n, consider any IN2f e {IN 2 } that weakly induces f,

^ OUT2p( ^ ^i.e., such that IN2( u ) = IN2e _ u ) = (A(f), f( u )). (The analysis will not be affected if n

is an output partition and we restrict attention to those intelligibility functions for rt that are ques-

tion-independent.) Since C 1 >> C 2, we can then choose an IN 1, INlf([N2f), to strongly induce IN2f

together with any question-independent intelligibility function of OUT2p. (Indeed, in general

there can be more than one such value of IN 1 that induces IN2f.) So in particular, we can choose it

so that the vector OUTIp( u ) = (A(I2A(f)), I2A(f)( u )) for any possible function I2A(t3. Now for

that IN l, IN2( u ) = IN2f, and therefore A(OUT2q( u )) = A(f), which means that I2a(e)( _ ) =

OUT2a( _ ), which in turn equals f( _t ) for that IN 2. So V _ such that IN1( _ ) = INlf(lN2f),

OUTLp( _ ) = (A(f), f( _ )). In other words, INlf(IN2f) weakly induces in C l the same intelligibil-

ity function for n that IN2F weakly induces in C 2. However since INl( _ ) = INlf(IN2f)

" =iN2f, ^ ,, iN2f) " ,,IN2f( u ) the set of u _ 1_ such that INI( u ) = INlf( is _ the set such that INk( u ) =

IN2f. This means that I(INtf{IN2f)) _>l(IN2f). (Our task, loosely speaking, is to bound this differ-

ence in lengths, and then to extend the analysis to simultaneously consider all such question-inde-

pendent intelligibility functions f.)

Take {fi } to be the set of all intelligibility functions for n. By the preceding construction, n is

weakly predictable to C 1 with a (not necessarily proper) subset of {INL_(IN2fi)} being a member

of (Ci)'l(r0. Now any member of (Cl)'l(n) must contain at least three disjoint elements, cot're-
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sponding to intelligibility functions q with A(OUTlq( _a )) = B, {0}, or { I}. (See the discussion

just before Lemma 1.) Accordingly, the volume (as measured by dp.) of any subset of

{INlti(IN2ti)} 6 (Cl)-l(rt) must be at least 3 times the volume of the element of {INtti(IN2t.i)} hav-

ing the smallest volume. In other words, the length of any subset of {INtfi(IN2q)} 6 (Ct)l(rt)

must be at most -in(3) plus the length of the longest element of {IN tt-i(IN2fi)}. Therefore c(rc [ C t)

< maxt- i [l(INtfi(IN2fi))] -In(3).

Now take {IN2fi } to be the set in (C2) -l(rt) with minimal length. {[N2t-i } has at most o(2 =) dis-

joint elements, one for each intelligibility function for ft. Using the relation mini[gi] = -max i [-gi],

this means that c(rt [ C 2) > -ln[o(2rc)] + minfi [l(IN2fi) ]. Therefore we can write c(rt ] C 1) - c(rt ] C 2)

< ln[o(2_)] - In(3) + maxfi [l(INltq(IN2fi)) ] - minfi [l(IN2fi)]. The fact that for all IN2fi. IN2( u ) =

IN2fi A(OUT2q( "u )) = A(f i) c B completes the proof of (i).

To prove (ii), note that we can always construct one of the sets in (Cl)-t(rt) by starting with the

set consisting of the element of {INtfi(IN2fi)} having the shortest length, and then successively

adding other IN 1 values to that set, until we get a full (weak) prediction set. Therefore c(rc [ C 1) <

mint] I(INlt](IN2fi)). Using this bound rather than the one involving -In(3) establishes (ii). QED.

Note that the set of X 6 B such that [C2]-I(x) exists must be non-empty, since C 2 > n. Simi-

A A

larly, C 2 > rt means that there is a u such that A(OUTq( u )) = X c B. The associated I2x always

A A A A

exists by construction: simply define I2x( u ) = OUT2a( u ) V u such that A(OUTq( u )) = X, and

A A

for all other u, I2x( u ) = x for some x _ X. Therefore the extrema in our bounds are always well-

defined.

As one varies re, in both bounds in Thm. 8 the dependence of the bound on C t and C 2 does not

change. In addition, those bounds are independent of n for all _t sharing the same cardinality. So in

particular they are independent of rc for all binary partitions like those discussed in Ex. 3. This

illustrates how Thm. 7 is the physical computation analogue of the result in Turing machine the-

ory that the difference in algorithmic complexity of a fixed string with respect to two separate Tur-

ing machines is bounded by the complexity of "emulating" the one Turing machine on the other,
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independentof thefixedstring inquestion.

Considerthepossibility thatfor the lawsof physicsin ouruniverse,thereexist partitions[N(.)

andOUT(.) thatconstitutea universalphysicalcomputerC* for all other physical computers in

our universe. Then by Thm. 5, no other computer is similarly universal. Therefore there exists a

unique prediction complexity measure that is applicable to all physical computers in our universe,

namely complexity with respect to C*. (This contrasts with the case of algorithmic information

complexity, where there is an arbitrariness in the choice of the universal TM used.) If instead there

is no universal physical computer in our universe, then every physical computer C must fail at

least once at (strongly) predicting some other physical computer. (Note that unlike the case with

weak predictability considered in Thm. 2, here we aren't requiring that the universe be capable of

having two distinguishable versions of C.) This establishes the following:

Theorem 9: Either infallible strong prediction is impossible in our universe, or there is a unique

complexity measure in our universe.

Similar conclusions hold if one restricts attention to a set of (physically localized) conventional

physical computers (cf. Ex. 1 above), where the light cones in the set are arranged to allow the

requisite information to reach the putative universal physical computer.

FUTURE WORK AND DISCUSSION

Any results concerning physical computation should, at a minimum, apply to the computer

lying on a scientist's desk. However that computer is governed by the mathematics of determinis-

tic finite automata, not that of Turing machines. In particular, the impossibility results concerning

Turing machines rely on infinite structures that do not exist in any computer on a scientist's desk.

Accordingly, there is a discrepancy between the domain of those results and that of any truly gen-
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eral theoryof physicalcomputers.

On theother hand, when one carefully analyzes actual computers that perform calculations

concerning the physical world, one uncovers a mathematical structure governing those computers

that is replete with its own impossibility results. While much of that structure parallels Tunng

machine theory, much of it has no direct analogue in that theory. For example, this new structure

has no need for tapes, moveable heads, internal states, read/write capabilities, and the like, none

of which have any obvious connection to the laws governing our universe (i.e., any connection to

quantum mechanics and general relativity).

In fact, when the underlying functions of real-world computers are stripped down to their

essentials, one does not even need to identify a "computer" with a device occupying a particular

localized region of space-time, never mind one with heads and the like. In place of all those con-

cepts one has a structure involving several partitions over the space of all worldlines of the uni-

verse. The partitions in that structure delineate a particular computer's inputs, the questions it

addresses, and its outputs. The impossibility results of physical computation concern the relation

of those partitions. Computers in the conventional, space-time localized sense (the box on your

desk) are simply special examples, with lots of extra restrictions that turn out to be unnecessary in

the underlying mathematics. Accordingly, the general definition of a "physical computer" has no

such restrictions. A side-benefit of this breadth is that the associated mathematics can be viewed

as concerning many information-processing activities (e.g., observation, control) normally viewed

as distinct from computation.

In the first paper in this pair, this definition of a physical computer was motivated and pre-

sented, along with some associated theorems. Those theorems imply, amongst other things, that

fool-proof prediction of the future is impossible -- there are always some questions concerning

the future that cannot even be posed to a computer, and of those that can be posed, there are

always some for which the computer's answer will be wrong. By exploiting the breadth of the def-

inition of physical "computation", similar results hold for the information-processing of observa-

tion and of control. All of this is true even in a classical, non-chaotic, finite universe, and

regardless of the where in the Chomsky hierarchy the computer lies.

This second paper launches from the theorems of the first paper into a broader, albeit prelirni-
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nary investigationof the mathematicsof physicalcomputation.It is shownthat thecomputability

structurerelatingdistinctphysicalcomputersis thatof adirected,acyclicgraph.[n addition,there

is at mostone computer (called a "god computer") that can predict/observe/control all other

computers. Other results derived include limits on error-correction using multiple computers, and

some analogues of the Halting theorem.

Next a definition of the complexity of a particular computational task for a particular physical

computer, prediction complexity, is motivated. The motivation of this new definition of complex-

ity proceeds by analogy to the concept of the algorithmic information complexity of a symbol

sequence for a universal Turing machine. However whereas algorithmic information complexity

concerns a Turing machine's generating such a symbol sequence, prediction complexity involves

a physical computer's addressing a computational task concerning the physical universe.

The difference in prediction complexity of a particular task n for two different physical com-

puters C l and C 2 is considered. It is proven that that complexity difference is bounded by a func-

tion that only depends on C 1 and C 2, and is independent ofn. This bound relating the difference in

complexity for two physical computers is analogous to the algorithmic information complexity

cost of emulating one universal Turing machine with another one. Finally, it is proven that either a

certain kind of computation is not possible in our universe, or there is a preferred computer in our

universe. If it exists, that computer could be used to uniquely specify the prediction complexity of

any task n. Accordingly, either a certain kind of computation is impossible, or there is a preferred

definition of physical complexity (in contrast to the arbitrariness inherent in algorithmic informa-

tion complexity's choice of universal Turing machine).

The following ideas are just a few of the questions that the analysis of this paper raises:

i) What other restrictions are there on the predictability relations within distinguishable sets of

physical computers beyond that they form unions of DAG's? In other words, which unions of

DAG's can be manifested as the predictability relations within a distinguishable set? How does

this answer change depending on whether we are considering sets of fully input-distinguishable

computers or sets of pairwise-distinguishable computers? For what computers are there finite /

countably infinite / uncountably infinite numbers of levels below it in the DAG to which it
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belongs'? Might such levels be gainfully compared to the conventional computer science theory

issue of position in the Chomsky hierarchy?

ii) One might try to characterize the unpredictability-of-the-future result of paper I as the physical

computation analogue of the following issue in Turing machine theory. Can one construct a Tur-

ing machine M that can take as input A, an encoding of a Turing machine and its tape, and for any

such A compute what state A's Turing machine will be in after will be in after n steps, and per-

form this computation in fewer than n steps? This characterization suggests investigating the for-

mal parallels (if any) between the results of these papers and the "speed-up" theorems of

computer science.

iii) More speculatively, the close formal connection between the results of this second paper and

those of computer science theory suggest that it may be possible to find physical analogues of

most of the other results of computer science theory, and thereby construct a full-blown "physical

computer science theory". In particular, it may be possible to build a hierarchy of physical com-

puting power, in analogy to the Chomsky hierarchy. In this way we could translate computer sci-

ence theory into physics, and thereby render it physically meaningful.

We might be able to do at least some of this even without relying on the DAG relationship

among the physical computers in a particular set. As an example, we could consider a system that

can correctIy predict the future state of the universe from any current state of the universe, before

that future state occurs. The behavior of such a system is perfectly well-defined, since the laws of

physics are fully deterministic (for quantum mechanics this statement implicitly presumes that

one views those laws as regarding the evolution of the wave function rather than of observables

determined by non-unitary transformations of that wave function). Nonetheless, by the central

unpredictability result of paper I, we know that such a system lies too high in the hierarchy to

exist in more than one copy in our physical universe.

With such a system identified with an oracle of computer science theory we have the defini-
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tion of a "physical" oracle.Can weconstructfurtheranalogueswith computersciencetheoryby

leveragingthat definition of a physical oracle?[n other words, can we take the relationships

between(computer science) oracles, Turing machines, and the other members of the (computer

science) Chomsky hierarchy, and use those relationships together with our (physical) oracle and

physical computers to gainfully define other members of a (physical) Chomsky hierarchy?

iv) Can we then go further and define physical analogues of concepts like P vs. NP, and the like?

Might the halting probability constant D, of algorithmic information theory have an analogue in

physical computation theory?

As another example of possible links between conventional computer science theory and that

of physical computers, is there a physical computer analogue of Berry's paradox? Weakly predict-

ing a partition is the physical computation analogue of "generating a symbol sequence" in algo-

rithmic information complexity. The core of Berry's paradox is that there are numbers k such that

no Turing machine can generate a sequence having algorithmic information complexity k (with

respect to some pre-specified universal Turing machine U). So for example one closely related

issue in physical computation is to characterize the physical computers C 1 and x _ 'El such that 3

C 2 C 2a computer C 2 where C 1 >> and where '¢ partitions r_, weakly predicts whether c(_ [ C 1) >

^ OUT2p( "x (i.e., such that 3 IN 2 E {IN21 such that IN2( u ) = 1_-2 _ u ) = (B, whether ¢(x I CI) >

x)).

v) Concerns of computer science theory, and in particular of the theory of Turing machines, have

recently been incorporated into a good deal of work on the foundations of physics [33 }. Future

work involves replacing physical computers for Turing machines in this work, along with replac-

ing notions like prediction complexity for notions like algorithmic complexity.

vi) Other future work involves investigating other possible definitions of complexity for physical

computation. Even sticking to analogues of algorithmic information complexity, these might
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extendsignificantlybeyondthemodificationsto thedefinition of predictioncomplexitydiscussed

in thetext. Forexample,onemight try todefinetheanalogueof abit sequence's"length" in terms

of the numberof elementsin Q. Onemightalsotakethe(inverse)complexityof a computational

deviceto be thenumberof input-distinguishablecomputersthat canpredictthatdevice(working

in somepre-specifiedinput-distinguishableset,presumably).

vii) Yetotherfuturework includescalculatingphysicalcomplexityof varioussystemsfor someof

thesimple physicalmodelsof real-worldcomputers(e.g.,"billiard ball" computers,DNA com-

puting, etc.) that havebeeninvestigated,andinvestigatingthepredictioncomplexity of systems

like crystalsandgases.

FOOTNOTES

[I] Especially for non-binary Iz, many other definitions of prediction complexity besides Def.

1 l(ii) can be motivated. For example, one could reasonably define the complexity of _ to be the

sum of the complexities of each binary partition induced by an element of _, i.e., one could define

A A

it as Zp_r_ c({ u 6 p, u _ p} { C). Another variant, one that would differ from the one considered

in the text even for binary partitions, is minp_c-l(n) [_IN_la I(IN)]. For reasons of space, no such

alternatives will be considered in this paper.
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